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Abstract 

It is shown that the introduction of a time variable in a curved metric four-space of the 
Einstein type leads to an interpretation of gravity as an ether flow in a Riemannian 
three-space. It is assumed that the only motion that enters into physical laws is either 
motion relative to the ether or the relative motion of nearby points that are fixed in the 
ether, and this assumption is formulated analytically. A previous formulation of 
Newtonian fields in a metric four-space indicates that the three-space can be assumed 
to be Euclidean and provides field equations to determine the motion of the ether. It is 
also suggested that the velocity of light relative to the ether has the constant value c in 
many important physical fields. Finally, the observer's coordinates of the special theory 
of relativity are defined in the presence of a gravitational field. 

1. Introduction 

Most modern gravitational theories are written in terms of  a curved 
metric four-space in which the paths of  particles and light rays are assumed 
to be the geodesics of the metric tensor. However, the physicist who uses 
these theories has been conditioned from birth by a classical space-time, in 
which it appears that there is a universal Newtonian time and that three- 
dimensional space is Euclidean. As a result, much of the physical intuition 
that he develops in his everyday life is not readily applicable to modern 
gravitational theory. Since physical intuition is one of his most valuable 
guides to the advancement of  physics, it is very desirable to describe a 
curved metric space in the everyday terms of classical physics, and it is the 
object of  this paper to show how this can be done. 

Consider a four-space in which an arbitrary set of  space-time coordinates 
x, has been introduced. In principle this could be done by building a three- 
dimensional lattice which is moving or deforming in any way and by 
hanging a clock at each lattice point. Each lattice point can be described 
by three spatial coordinates, and the clocks can be synchronized in any 
way, provided only that the resulting coordinates have unique values for 
any space-time event that may be considered. A physical clock which 
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moves through a space-time interval dx~ will be assumed to measure a 
time dz that can be expressed in the form 

- c 2  dz2 = g,a dx~ dx  a (1.1) 

(Here, and throughout this paper, Greek indices will run from 1 to 4, 
Roman indices from 1 to 3, and repeated indices will be summed throughout 
their range.) The coefficients g~a are assumed to be of the type considered 
by Einstein, which can be diagonalized to have the diagonal values 1, 1, 1, 
and -1.  The factor - c  2, where c is the velocity of light, is inserted in equation 
(1.1) so that a positive value of g~adx~dx a will represent the square of a 
distance, while a negative value will have a magnitude which represents the 
square of  c times a local time interval. The time-like coordinate will be 
denoted by x4 and will be assumed to satisfy the inequality 

g~a Ox, Ox4 _ 44 
~x~ ~xa = g < 0  (1.2) 

where g,B is the reciprocal of  g,s. This inequality implies that there is a 
positive real function ~ such that 

- OX40X4 1 g ~ _ _  g44 = 
Ox, ~ = r (1.3) 

In three-dimensional notation equation (1.1) can be rewritten 

- c 2  d~Z = gu  dxi dx j  + 2g~, dx~ dx4 + g44 dx42 (1.4) 

where the sums are now carried from 1 to 3. The meaning of  this relation 
can be seen in classical terms if a three-dimensional tensor h ~J is defined in 
these coordinates to be the reciprocal of the three-dimensional tensor g~j, 
so that h~Jgjk = 6k ~, and if the quantities g~, are written in terms of the 
components of a three-dimensional vector field v ~, defined by 

v ~ = - h t J g j ,  (1.5) 

Then equation (1.4) becomes 

- c  2 dz 2 = gij(dx~ - v ~ dx , )  (dx~ - v J dx , )  + (g** - g~j v ~ vO dx ,  2 (1.6) 

By direct calculation, noting that g~, is given in terms of v* by equation (1.5), 
it is found that the determinant of the four-dimensional metric tensor g~a is 

g = h(g4, - g~j v ~ vO 

where h is the determinant of the three-dimensional tensor g~. From this 
it is clear that the quantity g44-  g~ v~vj in equation (1.6) is equal to g]h. 
Since k is the cofactor of g** in the determinant g, big is g, , ,  which by 
equation (1.3) is -1 / (  2, so that 

- g ~ j  v ~ v J = g = - U  g** (1 17) t /  
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and equation (1.6) becomes 

-c2 d~ 2 = g~j(dx~ - v~ dx,) (dx~ - vJ dx,) - ~2 dx,Z (1.8) 

Along the path of a light ray d-c is assumed to vanish, and equation (1.8) 
becomes 

[dx~ 
] \dx, 

Since g~j is the three-dimensional metric tensor on a surface defined by a 
given value of x4, and dx~/dx4 is the velocity of the light ray in the coordinates 
x~, this equation says that the speed of light relative to a point which moves 
with velocity v ~ is the same in all directions and has the magnitude ~. Thus 
the velocity fieM v i plays the role of  the classical ether velocity in that the 
velocity of light relative to the ether will then have the same value ~ in all 
directions. 

Along a path on which & does not vanish, equation (1.8) shows that the 
three-dimensional displacement dx~ enters into the expression for d~ only 
in the form of dx~ - v~ dx4, that is, the only displacement of  a moving clock 
which affects its measured time is its displacement relative to the ether. 
Since the paths of particles and light rays are assumed to be the geodesics 
of this measured time, the only motion of particles or light rays that enters 
into the laws of mechanics or of  ray optics is motion relative to the ether. 
As a result, the ether plays the role of the primary inertial system of classical 
physics, differing from it only in that it is not generally possible to introduce 
Cartesian coordinates in which the ether is everywhere at rest. 

This description of a metric space in terms of an ether flow is strongly 
dependent on the particular variable x4 that is chosen as a measure of time. 
If it is assumed, as in Newtonian theory, that there is a single universal time 
variable, then the motion of the ether is uniquely determined. However, in 
the special theory of relativity it is assumed that there are many different 
time variables, each of which is an equally valid measure of time, and in 
this situation there is a different ether velocity field for each such time 
variable. The ether velocity fields associated with two different time variables 
can be related by finding the ether velocity that would exist in some new 
set of coordinates x~' and determining the motion of a point that is fixed 
in the ether in these new coordinates relative to the ether in the original 
coordinates x~. To do this, it is first observed that the reciprocal of g~a is 
g~a, whose components are given by 

v ~ v J 
gU = h~J )2 

o I 
gi4= ~2 (1.9) 

1 g44=. ~2 
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To prove that this is the correct form ofg  ~a, it is only necessary to note that 
gi,  = - g u v  ~ by equation (1.5) and g44 = _~2 + g u v i d  by equation (1.7), 
and it can then be shown by direct calculation that g~agB~ = 6~ ~- From 
equations (1.9) it is seen that the ether velocity v ~ in the coordinates x~ can 
be written 

= gl~ 
v~ g44 (1.10) 

Since the coordinates x~ were arbitrary except that x4 is time-like, the ether 
velocity v v in the new coordinates x~' can be written similarly in terms of 
the g~a,, and is 

v v = gf4, 
g44, (1.11) 

Points that are fixed in the ether in the new coordinates are those whose 
coordinate differentials satisfy the relation 

dx~' = v v dx4' (1.12) 
or, from equation (1.11), 

d.. ' - ~4, dx4' 
" - ~ - s  ~ (1.13) 

The index i is replaced here by ~ and allowed to run from 1 to 4 because the 
equation is trivially satisfied for ~---4. Multiplying equation (1.13) by 
Oxa/Ox ~' and using the usual transformation relations for the quantities 
g~a, and dx~' gives 

dx a = ga~ Ox4' dx4' OXa, g44, (1.14) 

If  a point which is fixed in the ether of x, '  moves with velocity W ~ relative 
to the ether of x,, then, by definition, 

Wl -_ dxt v~ (1.15) 
dx4 

where dxi and dx4 are given by equation (1.14), that is, 

W l g~a Oxg,/OxB l 
= ~ ~  - v (1.16) 

If  the quantities g~a and g4~ are evaluated from equations (1.9) and if the 
total time derivative at a point moving with the ether is denoted by de/dx4, 
so that 

dx ,  = ax4 + v~ (1.17) 

equation (1.16) becomes 

W ~ ~2 hU Ox4' 
d e x ~ ' "  ~ (I ,18)  
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The meaning of equation (1.18) is very clear when it is applied to the 
familiar flat-space metric of the special theory, for which the coordinates 
x~ can be chosen so that 

g u  = 6 u  

g~, = 0 (1.19) 

g44 = --C2 

Here the three-dimensional tensor h u also equals 6is, since it is defined to 
be the reciprocal of gts. In addition, equation (1.5) shows that v t =  0, so 
that the ether is at rest in the coordinates x~, and since equations (1.19) 
imply that g 4 4 = - 1 / d ,  equation (1.3) shows that ~ = c. From equation 
(1.17) it then follows that d e / d x 4  = O/Ox4, and equation (1.18) becomes 

--C 2 OX4 t 

W '  = Ox,'/Ox~ Ox~ (1.20) 

The new time variable x~' is given by the Lorentz transformation 

1 ( w J xs~ 
x4' = a/(1 - w l w i /c2)  .x4 - c2 ] (1.21) 

where w * are the three parameters of the transformation. Substituting 
equation (1.21) into equation (1.20) gives 

W t = w ~ 

which shows that the ether of the new Lorentz frame is moving with a 
uniform velocity w I relative to the ether of the original frame. Thus an 
observer who uses the time variable x4 '  instead of x4 will consider himself 
to be fixed in the ether even though he is moving with a velocity w t relative 
to the ether of the original coordinates x~. 

In the general c a s e  of a curved metric space it is not possible to introduce 
Cartesian coordinates in which the ether is everywhere at rest, but it is still 
possible to define a set of Lorentz frames which play a role in the gravita- 
tional field similar to the one played by the Lorentz frames of the special 
theory in the electromagnetic field (Kirkwood, 1970). In each such Lorentz 
frame there is a uniquely determined time variable, and hence a uniquely 
determined ether velocity field. The velocity fields associated with two 
different Lorentz frames will not generally differ by a uniform velocity as 
they do in the special theory, but it is not difficult to show that in most 
fields of physical interest the field W ~ of equation (1.18) is roughly uniform 
as long as the parameters of the Lorentz transformation relating the two 
frames are much less than c. In this respect, the Lorentz frames in a curved 
space are at least qualitatively similar to those in a flat space. 

The above discussion has shown that the introduction of a time variable 
in a curved metric four-space leads to an interpretation of the four-space 
as an ether flow in a Riemannian three-space. The general idea that a curved 
four-space reformulates rather than replaces the ether was known to 
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Einstein, although he did not go so far as to define an ether velocity field 
(Einstein, 1934). An explicit description of gravity as an ether velocity field 
in a Euclidean three-space has been derived from elementary physical 
principles without the use of tensor calculus (Kirkwood, 1953). Also, an 
ether-like interpretation of a metric four-space has been given in a series 
of papers by J~nossy (Jfinossy, 1966). In spite of this, most modern theorists 
describe gravity by a metric four-space and make no reference to its inter- 
pretation as an ether flow, sometimes even concluding that Einstein,s theory 
disproves the idea of an ether. 

At first glance, it might appear that the formal equivalence of a metric 
four-space to an ether flow makes the distinction between these two inter- 
pretations insignificant. However, this is n o t  the case; in fact, the physical 
interpretation of the formalism may have a strong influence on the direction 
of future research. As an illustration, a physicist who thinks in terms of a 
metric four-space is likely to treat all four coordinates on an equal footing, 
while one who thinks in terms of an ether flow will tend to give preferential 
treatment to the time variable. The first physicist might then give his greatest 
attention to metric tensors which can be diagonalized everywhere, while 
the second might be more inclined to consider metric fields in which the 
three-dimensional geometry is nearly Euclidean and the gravitational field 
is described by the terms g~,, which determine the ether velocity and the 
velocity of light relative to the ether. AS a result, the difference in their 
interpretations of the same formalism might lead them along very different 
lines of theoretical investigation. 

The interpretation of gravity as an ether flow will be used throughout 
this paper, and it will be seen to provide a simple and intuitively under- 
standable description of gravity in the classical framework of three dimen- 
sions and time and also to suggest some new points of departure, both in 
gravitational research and in the unification of physics. 

2. Local Determinacy 

Classical physics is based upon the assumption that the motion that 
enters into fundamental physical laws is motion relative to a primary 
inertial system which is fixed relative to the fixed stars or to the center of 
mass of the universe. In the metric four-space discussed above, it was seen 
that the motion that enters into the laws of mechanics and ray optics is 
motion relative to the ether, and in this way the ether plays the role of the 
primary inertial system of classical physics. From a philosophical point of 
view, this is a great improvement over classical physics, because the motion 
of a body is then related to the motion of the ether at the point where the 
body is located rather than to the motion of a remote system such as the 
fixed stars, and it has always been difficult to accept a direct relation 
between the motions of widely separated bodies in the absence of any 
physical connection between them. However, this philosophical advantage 
was lost in most of the classical ether theories because it was assumed that 
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the motion of the ether itself was determined by laws like those of classical 
hydrodynamics or elasticity, which compare the velocity of the ether 
directly to that of the fixed stars. To avoid losing this philosophical advan- 
tage, it will be assumed here that the laws governing the motion of the ether 
do not refer directly to the motion of any remote point or system of bodies, 
such as the fixed stars or the center of mass of the universe. A more detailed 
discussion of this assumption has been given previously (Kirkwood, 1954), 
and it has been shown to put a marked limitation on the possible equations 
of motion of the ether, excluding, for example, most of the equations of 
motion of the classical ether theories. In this earlier discussion, quantities 
which do not refer to any remote system such as the fixed stars and equations 
involving only such quantities have been said to be determined locally, 
and the formulation of locally determined relations has been described in 
three-dimensional notation in a Euclidean three-space. In this section, a 
description of locally determined relations will be given in an arbitrary 
metric four-space, and it will be seen that this description is formally very 
different from the previous one, even though the underlying physical ideas 
are the same in both cases. 

From equation (1.8) it is seen that the local time dz measured by a physical 
clock in a time interval dx4 depends only on the motion of the clock relative 
to the ether and on the function (, which is the velocity of light relative to 
the ether, with the result that dz is a locally determined quantity. Since 
geodesics can be defined in terms of the line integral of dz, they are also 
determined locally, so that geodesic coordinates constructed with any 
given point as origin will be determined locally. I fa  scalar, vector, or tensor 
quantity has a physical meaning which does not depend on the motion of 
the fixed stars or of any other remote system, then its partial derivatives 
with respect to these geodesic coordinates will be determined locally, which 
implies that the covariant derivative of a locally determined scalar, vector, 
or tensor is also determined locally. Thus, tensor relations between locally 
determined scalars, vectors, and tensors and their covariant derivatives with 
respect to g,r will be determined locally. The fact that tensor relations of 
this type are determined locally is not surprising, because tensor relations 
hold in any coordinate system and thus can involve the motion of the 
fixed stars or of some other remote system only if this state of motion is 
explicitly represented in one or more of the tensors involved in the relation. 
Since the metric tensor and the other tensors considered above do not 
involve such a preferred state of motion, tensor relations between them 
would be expected to be determined locally. 

Because the curvature tensor can be defined in terms of the commutator 
of second covariant derivatives, it is clearly one of the tensors that can 
appear in locally determined relations. However, there are also other 
tensors that might appear in these relations, and some of these will now be 
described. The discussion here will be confined to those tensors which 
depend only on the physical quantities that are involved in the metric 
tensor g~B, as they have been described in the previous section. These 
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quantities are the three-dimensional metric on a surface of constant x4, 
the ether velocity v ~, and the velocity of light relative to the ether, denoted 
by (. 

Considering first the three-dimensional geometry, it is clear that the 
determination of  distances and angles at a given instant of the time variable 
x4 does not depend on the motion of the fixed stars or other remote system, 
so that the three-dimensional metric coefficients g~j are determined locally. 
This can be stated in a slightly different form by letting 61x~ and 62x~ be 
instantaneous increments in the coordinates, arbitrary except that 
6~x4 = 62x4 = 0, and observing that the three-dimensional geometry can 
be described in terms of quantities of the form g~j 61 x~62 x~, assuming that 
the special case in which 61x~ = 62x~ is included in the analysis. Then the 
observation made above is simply that all possible quantities of the form 
g~j 61 xi 62 xj are determined locally. 

Turning next to the ether velocity field, it is clear that if the motion of  
the ether is not to be compared with that of some remote system such as the 
fixed stars, then it is only the motion of the ether relative to nearby objects 
which is physically meaningful. Since only the motion of the ether itself is 
being considered here, it can enter into physical laws only as the relative 
motion of nearby points that are fixed in the ether, that is, as the rate of 
deformation of the ether. A point that is fixed in the ether is one that moves 
so that 

dx~ = vi dx, (2.1) 

where v ~ is given by equation (1.5). If  x~, x, + 6xx~, and x~ + 62x~ are the 
coordinates of  three nearby points that are fixed in the ether at a given 
instant of x,, then 61x, = 62x, = 0, and the rate of deformation of the 
ether is given by the rates of change of the lengths of  the three-dimensional 
vectors 6~x~ and 62xf and of the angle between them. These can be deter- 
mined from quantities of the form g~j 61 x~ 62 x j, so that the rate of deforma- 
tion of  the ether is determined by the rate of  change ofg~61x~62xj. This in 
turn depends on the time derivatives of 61 xt and 62 x j, which are functions 
of  x,  only, and on the total time derivative ofg~i evaluated at a point fixed 
in the ether, which can be found from equation (1.17), with the result that 

[3g~j k Og~ft d61 x~ _ 

+ gij 61 x~ d62 xj 
dx4 (2.2) 

The quantity d6~xddx, can be evaluated by noting that 61x~ is the dif- 
ference between the coordinates of two points that are fixed in the ether, 
so that the time derivative of  6~ xt is the difference of the velocities of these 
two points. Since the velocity of each point is the ether velocity v ~, this 
implies that 

d61 xf Ov v 
dx, Oxk6, x~ 



THE PHYSICS OF A METRIC SPACE WITH A TIME VARIABLE 399 

where k is summed from 1 to 3, since 61X 4 = 0. Multiplying by g~j and 
noting that v ~ is given by equation (1.5) gives 

d61 x~ 0 
g~J Ox,, = g~: ~ (_fi t  gt4) 61 Xk 

[ agj, . ~ Oglj'~ 
. . . . .  v - -  v l X  k 

Using this and a similar relation for g,f l f2x/dx, , ,  equation (2.2) becomes 

d 
dx, (g~ 61 x~ 62 x j) = -2[(6,  4) + v~(/j, k)] 61 x~ 62 x~ 

where (/j,k) is the three-dimensional Christoffel symbol. Using the last 
two of equations (1.9), this is seen to be 

d 
dx, (g*J 61 xi 62 x j) = 2~ 2 gr4(o~fl, T) 61 x,  62 xtl 

where (aft, 7) is the four-dimensional Christoffel symbol and the sums over 
and fl have been extended from 1 to 4 without affecting the result, because 

6~x, = 62x, = 0. Finally, since Ox4/Ox~ = (0001) and all second derivatives 
of  x,  vanish, it is seen that 

g ( /?, 7) [Ox, Oxa re ~ Ox, 

so that 

d 
dx, (g~j 61 xi 62 x j) = -2~ 2 x4:~B 61 x, 62 xB (2.3) 

where Xa;,a denotes the second covariant derivative of  x4, that is: 

02 x,, Ox, 
x4;~a = Ox~ Ox# g~e(~fl, 7) Oxe 

Turning finally to the function (, it is clear that since ~ is the velocity of  
light relative to the ether it is determined locally and can appear in physical 
laws. Thus the increment of  1/~ z associated with an arbitrary increment 
Ax, of  the coordinates will also be determined locally. From equation (1.3) 
this quantity is 

~ O X 4  
=--2g -~x X4;B Ax~ 

If  dxtj is the displacement of  a point that is fixed in the ether during an 
arbitrary time interval dx4, then dx~ = v~dx4 and from the last two of 
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equations (1.9) dxa =-~2gO*dx,. Thus g~O Ox4/Ox~ = gO4= _(1/~2)dxa/dx4, 
and the above relation can be written 

-~ x , m  ~ zaxa (2.4) 

from which it is clear that x4;~a(dx~/dx,)Axa is determined locally for any 
Ax e and for any dx,, if  dx~ is the displacement of a point fixed in the ether. 
From equation (2.3) it is seen that x,:~a61X~rzX a is determined locally for 
any 61x~ and 62x a such that 61x , = 62x4 = 0. Since an arbitrary Ax~ can 
always be written in the form 3x~ + (dx~/dx,)Ax,, where fix, = 0, it follows 
that for any Alx~ and Azx a the quantity x4;aBAlx~A2x B c a n  be written in 
terms of  the locally determined quantities given above, and hence 
x,;~aAl x~A2x a is determined locally for any values of Al x~ and Azx a. If  this 
quantity is to be expressed in any other coordinates, Alx~ and A2x a will 
transform as contravariant four-vectors, with the result that x4;~a will 
transform as a tensor with two covariant indices. As shown above, this 
means that tensor relations involving the metric tensor, the curvature tensor 
(and its covariant derivatives), and eovariant derivatives of the time variable 
x,  will be determined locally. However, relations involving the covariant 
derivatives of  x,  will be determined locally only if the time variable is x4, 
and not if  any other time variable is used. Thus a relation will generally be 
determined locally only with respect to one particular time variable, and 
some discussion is necessary to reconcile the assumption that the laws of  
physics are determined locally with the requirement that they are Lorentz 
invariant. 

The meaning of Lorentz invariance in the presence of a gravitational field 
has been discussed previously (Kirkwood, 1970). It has been shown that if 
the metric coefficients g~o are written in one Lorentz frame in terms of a 
set of  functions fl, V, t, ~u, and/~u in the form 

2V Ot Ot 
- z,, Ux. (2.5) 

where N can be as large as desired and where ~a  is given by 

oB 
al4 Oxl (2.6) 

a44 = - e  2 --  2 0 x ,  

then the coordinates x~' of a new Lorentz frame are defined so that x~' and 
x ;  + fl/c 2 are related to x~ and x,  + fl/c 2 by the usual Lorentz transformation 
of the special theory. The functional form of the metric coefficients given by 
equations (2.5) and (2.6) is the same in all Lorentz frames when fl, IT, t, 
2,, and/~n are treated as invariant functions. With this formulation of  
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Lorentz invariance, it is clear that tensor relations involving the metric tensor, 
the curvature tensor, and the functions fl, V, t, 2~, and g, and their covariant 
derivatives will have the same functional form in all Lorentz frames when they 
are expressed in terms of  fl, V, t, 2,, and #,, and their partial derivatives, and 
in this sense these relations will be Lorentz invariant. 

Comparing these Lorentz invariant relations with the locally determined 
relations found above, it is seen that tensor relations which involve the field 
quantities only through the metric tensor and the curvature tensor (including 
its covariant derivatives) will be both Lorentz invariant and determined 
locally. Relations of this type were the ones considered by Einstein in his 
formulation of gravity. Since they do not involve the coordinate x4 explicitly, 
they will be determined locally with respect to any time variable, and hence 
will be determined locally in any Lorentz frame. There is no doubt that this 
property gives these relations a certain formal and philosophical beauty, 
but there is no philosophical necessity for requiring that the laws of physics 
must be determined locally in every Lorentz frame, and it is possible that 
Einstein's theory may have been too restrictive in this respect. 

In most gravitational fields that are of physical interest, the coordinates 
x~ in one Lorentz frame can be chosen so that x4 = t, and in this frame the 
terms involving 2, and #, in equation (2.5) can be neglected. The three- 
dimensional geometry is then Euclidean and the function Vis the Newtonian 
gravitational potential. In such fields, tensor relations involving the metric 
and curvature tensors and the covariant derivatives of t are Lorentz 
invariant and are also determined locally in the one Lorentz frame in which 
x4 = t. Furthermore, in an arbitrary metric field, laws of this type will be 
both Lorentz invariant and determined locally with respect to the invariant 
time function t, and this is all that is really required by the philosophical 
considerations discussed above. Therefore, it will be assumed here that 
the laws o f  physics can be written as tensor relations in which space, time, 
and gravity appear only through the metric tensor, the curvature tensor (and 
its covariant derivatives), and the eovariant derivatives of  the invariant time 

function t. This assumption puts a severe restriction on the possible equa- 
tions that might describe the gravitational field but is less restrictive than 
the assumptions of Einstein's theory, which do not include the possible 
existence of an invariant time function t. 

3. The fieM Equations 

The considerations of the previous section are not sufficient by themselves 
to determine the gravitational field uniquely, and some additional facts are 
needed to specify the field equations. Without doubt, the facts which are 
established with the greatest certainty are those described by Newton's 
theory of gravity, and the most straightforward procedure for finding field 
equations that agree with the results of the previous section is to formulate 
Newtonian theory in the framework of a metric four-space. This has been 
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done in a previous paper (Kirkwood, 1972), where it has been shown that 
the Newtonian fields are solutions of the equation 

p~ =-4nK#~-~tx~ 
Ot 

Ox B (3.1) 

where K is the gravitational constant, # the mass density, t the invariant 
time function, and 

p~n = (g~0 + 0:2 t ~ t 0) [R,~eB + 0:2(t;, ~ t;~B _ t;r~ t;,e)] (3.2) 

Here R,~o~ is the curvature tensor determined from g,p, t" is defined by 

Ot 
t" ~- g~tJ Oxtj (3.3) 

and the function 0: is the velocity of light relative to the ether in coordinates 
in which x4 = t. Thus 0: is the function ( of equation (1.3) when the time 
variable is t, and hence is defined so that 

Ot Ot 1 
g~ Ox, Ox~ =- 0:2 (3.4) 

Equation (3.1) is a complete and exact description of Newtonian gravita- 
tional fields, including the fact that the three-dimensional geometry at one 
instant of  t is Euclidean. When x4 = t and the spatial coordinates x~ are 
Cartesian, the solutions of  equation (3.1) are given by equation (2.5) with 
2, = 0, that is, by 

g~j = 6~j 

g"~ = -b-~xt (3.5) 

g44 = - 2  V -  2 ~ - c 2 

where V is a solution of Poisson's equation. It has been shown previously 
(Kirkwood, 1970) that if V =  -KM/r  and fl = -(8KMr) 1/2, equations (3.5) 
become the Schwarzschild field, and hence they yield all of  the relativistic 
corrections to Newton's theory that have been verified in the Schwarzschild 
field, provided that dz is given by equation (1.1) and the orbits of particles 
and light rays are assumed to be geodesics. 

Since p~ is a tensor which involves only the metric tensor, the curvature 
tensor, and the covariant derivatives of t, equation (3.1) is determined 
locally with respect to the time variable t. It would also be Lorentz invariant 
if K# were invariant under the Lorentz transformation, but this would 
conflict with the known transformation properties o f #  as they are given in 
the special theory. To overcome this difficulty, it has been assumed 
previously that the right side of equation (3.1) is only an approximate form 
of a tensor which involves only the metric tensor and the stress-energy- 
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momentum tensor of the special theory. The three-dimensional stresses 
have been specified in such a way as to maintain the Euclidean nature of 
three-space at one instant of t, and the weak-field approximation of the field 
equation has been made closely analogous to classical electrodynamics, 
which is very desirable if gravity and electromagnetism are to be unified. 
It is then found that equation (3.1) is replaced by 

2TcK 
P,a = - ~ (P~a - �89 Pg~a) (3.6) 

where P,a is the stress-energy-momentum tensor associated with ponderable 
matter and P =- g'aP~ a. Since P~a = 0 where # = 0, the external Newtonian 
fields, including the external Schwarzschild field, still satisfy equation (3.6). 
Furthermore, equation (3.6) is determined locally with respect to the time 
variable t, and the mass density enters into it only as p,4 and hence trans- 
forms as required by the special theory. 

Although equation (3.6) is formally ten equations, it has been assumed 
that six of these equations merely define the three-dimensional stress in 
such a way that the three-dimensional geometry at one instant of t is 
Euclidean. Thus it is possible to choose coordinates so that x4 = t and the 
spatial coordinates x~ are Cartesian, and in these coordinates equation (3.6) 
reduces to four field equations involving the coefficients g,4. These four 
equations have been shown to be 

a [Og,r ~g,,,~ 4nKg , , .  

ax~ \ ax~ axj ] = -U--'utu + g~,) 

102g. a2g,. l?g,.   ,47g; ~ 
(3.7) 4nKg . 

- ~ v t g  + (u'  + g , , ) g , 4 ]  

Here u ~ is the velocity of ponderable matter, defined so that p~4 =/ tu  ~, and 
g --- g , ,  - v 2 = _~2 from equation (1.7), noting that ~ = ~ and that gu = 5u 
and h -- 1 in these coordinates, and denoting v ~ v ~ by v 2. 

From the results of the first section of this paper, this Lorentz-invariant 
extension of Newtonian theory is readily interpreted in terms of an ether 
flow. In the coordinates of equations (3.7), equation (1.5) shows that 
g~, = - v  t, and g44 is given by _~2 + v 2, so that equations (3.7) can be written 
in three-dimensional vector notation in the form 

4nK~ 2 
VxVxv = c4 # ( u -  v) (3.8) 

�89 2 + v:) + - -  ~x4 V.v  - { (Vxv)  2 = - 4rccK~2,u[~2 + ( u -  v).v] 

The second of  these equations can be rewritten by replacing (41zKo~2/c 4) • 
#(u  - v) by use of the first equation and making use of the vector identity 

�89 2 v 2 - �89 2 + v. VxVxv  --  4':  4' + v.  V(V.v )  
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where ~ is the classical rate-of-strain tensor, whose components are 

1 { ~vi avA 
~b,j = ~t~-~j + N ]  (3.9/ 

and where ~:~k = ~b~j ~btj. Equations (3.8) then become 

4~Kcr 2 . 

VxVxv= ~ #(u-v) 
4zcK~* (3.10) d _  --.-~V2 (Z 2 + ~-~f4 (V. v) + q~:q, = - ~ #  

where de/dx4 is the total time derivative at a point fixed in the ether, defined 
by equation (1.17). In the nonrelativistic limit in which c ~ 0% if it is 
assumed that ~z/c -+ 1, equations (3.10) become 

VxVxv = 0 
(3.11) d 

- 4 v  ~ ~2 + ~ (V. v) + ~:  ~ = -4rcK# 

When ~ is a constant, these relations reduce to the field equations that have 
been obtained previously directly from Newtonian theory (Kirkwood, 
1954), as is to be expected from the way in which they were derived. 

In general, equations (3.7) or (3.8) do not determine the metric coefficients 
uniquely, and this lack of  uniqueness can be exhibited explicitly in regions 
in which # = 0. Here, the right sides of equations (3.7) vanish, with the 
result that if g~4 and g44 are one set of  solutions of  equations (3.7) then 
g~4 + OZ/Oxi and g44 q- 2OZ/Ox4 are easily seen to be another set of  solutions, 
where ;~ is an arbitrary function. In this way the free-space equations admit 
of  a gauge invariance similar to the one found in electromagnetism. How- 
ever, replacing g~4 and g44 by g~4 + az/axl and g44 + 20Z/Ox4 replaces 
-c2dz 2 of equation (1.1) by -c2dz 2 + 2dx4dx and hence affects the value 
of  dz, so that the function Z has physical meaning and cannot be specified 
arbitrarily, as is done in the case of  the electromagnetic gauge. For this 
reason, the additional relation that is required to determine the field 
uniquely is not arbitrary and must be determined from observation. It will 
now be shown that this additional relation has no effect on the predictions 
of  the theory in the nonrelativistie limit as c ~ 0% and hence it must be 
determined from observations of  the relativistic corrections to Newtonian 
theory. 

In the nonrelativistie approximation, the field satisfies equations (3.11), 
the first of  which leads to solutions of  the form v = Vfl. For these fields the 
second of  equations (3.8) becomes, in the limit as c ~ o% 
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Assuming that a ~ ~ as c -+ oo in such a way that ~2 _ c 2 is finite, this is 
seen to be Poisson's equation for the Newtonian potential 

V =  ~ 2 _  e 2 (V/~)2 a/~ 
2 2 ax, (3.12) 

where the term -e2/2 is added so that V = 0 in fiat space, where/~ = 0 and 
= e. Since x4 = t and ~ is the function ~ of equation (1.8), equation (1.8) 

shows that & -+ dx4 as ~ and e approach infinity in such a way that ~/e -+ 1. 
Thus, in the nonrelativistie limit, a moving clock wilt measure the time 
coordinate x4. Under these circumstances the geodesic equation becomes 
(Kirkwood, 1972): 

d2x~ [Ogj4 agv~]dxj ag,, lag,,,  
ax ,  2 ax, 2 

Since g~4 = -v~ = -Op/Oxf, the first term on the right side vanishes, and this 
equation is 

0 a/~ 
d2X'dx,2 = - ff~xl (-~-~4 -�89 

where, as in equations (3.8), g** = -c~ 2 + v 2 = -c~ 2 + (V/~) 2. This shows that 
the acceleration of a moving body or light ray is equal to the negative 
gradient of the Newtonian potential V given by equation (3.12). Thus 
bodies move as predicted by Newtonian theory and light travels instan- 
taneously in straight lines, because a finite acceleration does not alter the 
infinite velocity of light. The motion of  a body or a light ray and the time 
measured by a physical clock are completely determined in the nonrelativis- 
tic approximation by the potential function V. Thus, an observation that is 
accurate only to the nonrelativistic approximation depends only on the 
value of V and can never determine either ~ or 13, except to the extent that 

and 13 must yield the proper value of V when they are used in equation 
(3.12). Replacing gf, by gf, + OX/Ox , and g** by g** + 2OZ/OX, is equivalent 
to replacing/~ by/~ - Z in the nonrelativistic approximation, because here 
g~, = -O~/Ox~ and g4, = -c~2 + (V/~) z, which, from equation (3.12), shows 
that g,4 =-c2-2V-2013/0x4.  Because // cannot be determined from 
measurements accurate only to the nonrelativistic approximation, Z cannot 
be determined either. 

Thus the only evidence concerning gravity that might suggest the desired 
additional relation is to be found in the relativistic corrections to Newtonian 
theory. The existence of gravitational radiation is one such correction, and 
it is not difficult to add an additional relation to the field equations in such 
a way that the theory will predict radiation. However, so little observational 
information is available concerning radiated fields that the additional 
relation is not determined uniquely, and the motivation for any such 
procedure is very weak at present. The only other verifiable corrections to 
Newtonian theory are thoSe that have been found in the static, spherically 
symmetric field about a single mass, and this field will now be investigated 
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in detail, assuming that equations (3.7) are an exact, although incomplete, 
description of the field. 

4. The Spherical ly  S y m m e t r i c  F ieM 

The static, spherically symmetric solution of equations (3.7) can be found 
in the external region where # = 0 by noting that x4 = t and g~j = ~ ,  so 
that g~4 =-v~,  and that the spherical symmetry implies that the ether 
velocity v must be radial and have a magnitude depending only on the 
distance r from the center of  symmetry. Therefore, Vxv vanishes and a 
function ]~ exists such that v --- Vfl, so that the first of  equations (3.7) is 
satisfied identically in the region where # = 0. Because the field is static, 
the quantity a2g~Jax4ax~ vanishes, and the second of  equations (3.7) 
reduces to V2g44 = 0 in this region. I f  g44 is to approach its flat-space value 
o f - c  2 as r --> 0% this implies that g44 = 2 K M / r  - c 2, where Mis  a parameter 
which differs from the total mass producing the field only by relativistic 
corrections which are too small to be significant in the solar field (Kirkwood, 
1972). Since g44 = _~2 + v 2, where v 2 = (V]~) 2, it follows that 

2 K M  
~2 _ c 2 + v2 _ _ _  ( 4 . 1 )  

r 

Thus the exact form of  equations (3.7) determines only ~2 _ v 2, which is 
the same as ~ 2  _ (V/~)2, and does not determine ~ and ]~ separately, just as 
in the case of  the nonrelativistic approximation described in the previous 
section. 

The gravitational red shift can be found from equation (1.8). When 
x4 = t, giz = ~tj, and ~ = ~, equation (1.8) becomes 

- c 2  dz 2 = (dxi - vi d t ) (dx i  - vi d t )  - ot2 dt 2 (4.2) 

For a clock that is fixed in the coordinates xi, dxl = O, and equation (4.2) 
becomes 

_ c  2 d~2 = (v 2 _ ~2) dt  2 

Using equation (4.1), this gives 

- - - ~  ] dt  

This is exactly Einstein's equation for the gravitational red shift in the 
Schwarzschild field, and it is apparent that this relation is independent of 
the way in which e and 1~ are specified as long as equation (4.1) is satisfied, 
and therefore that measurements of  the red shift in the spherically symmetric 
field will give no information about the values of ~ and 1~ separately. 

The orbital equations are found from ~ j" dz = 0, where dz is given by 
equation (4.2), and are the classical Euler-Lagrange equations derived 
from the variation principle ~ j" Ldt  = 0, where 

, j  ,)(@_v,;] 
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If  r and 0 are polar coordinates in the plane of the orbit and their time 
derivatives are denoted by ~ and 0, then 

L = 1 V,(~ 2 _ v2 _ f2 _ r202 + 2vf) (4.4) 
c 

The spherical symmetry implies that ~ and v are functions of r only, so 
that L does not depend explicitly on either 0 or t, and hence the equations 
of  motion have energy and angular momentum integrals given by 

aL .  aL_. 1 2 
h = - ~ r + - ~ O - L = e - ~ L ( - C t  + v 2 -  vQ 

OL r z 
k . . . .  (4.5) O0 c 2 L  0 

Since ~ is the velocity of light relative to the ether, it is clear from equation 
(4.3) that L = 0 along the path of a ray of light. Equations (4.5) then show 
that h and k are both infinite for such an orbit while the ratio o f h / k  is finite. 
Thus the path of a ray of light can be found as a limiting case of equations 
(4.5) by letting h and k approach infinity in such a way that h / k  is finite, 
and there is no need for a separate analysis of the orbits of light rays. 

To find the orbital equation, it is convenient to let r '  =. dr/dO = ?/O and 
to write L, h, and k in terms of r '  and 6: 

z,  = 1 a / ( ~  2 _ v2 _ (r ,  ~ + r~ ) O~ + 2vr '  O) 
c 

1 2 
h =e-~L(-Ct  + v 2 - vr 'O) (4.6) 

r 2 
k ---c-~LO 

Then 0 can be found from the ratio h/k ,  and is 

~2 __ V2 
0 

(h/k)r  2 _ vr '  

Using this value of 0 in the first of equations (4.6) and using the resulting 
expression for L as well as the one for 0 in either the second or third of  
these equations leads to the orbital equation 

~2 ( r 2 ) h 2 
r 2 _ --r2r '2 + 1 + ~  (~2_ v 2)_ k 2 0 (4.7) 

Letting u = - l / r  and u ' - d u / d O ,  and noting from equation (4.1) that 
ct 2 - v 2 = c 2 - 2 K M / r  gives 

1 - h 2 2 K M  
~2 u,2 k ~  + ~ u - c 2 u 2 + 2 K M u  a (4.8) 
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If  a = c this is Einstein's equation for the orbit of  a planet, and if a = c 
and h and k both approach infinity in such a way that h/k is finite, this is 
Einstein's equation for the orbit of  a light ray. This is to be expected, because 
if a = c the magnitude of  v 2 is found from equation (4.1) to be 2KM/r, and 
this velocity field has been shown previously to lead exactly to the Schwarz- 
schild field of  Einstein's theory (Kirkwood, 1953). 

I f  a is not constant but is instead an arbitrary function of  r, the orbital 
equation for either a particle or a light ray differs from the equation given 
by Einstein's theory only in that cu' is replaced by au'. If  a new independent 
variable 0* is defined along the orbit so that dO*= (c/a)dO and 0 " =  0, 
where 0 = 0, then the orbital equation in terms of  0* is exactly Einstein's 
orbital equation. As a result, the value of r that would have occurred in 
Einstein's theory at the azimuth angle 0* will now occur at the actual 
azimuth angle 0, and the orbits can be found from those of  Einstein's theory 
when 0* is known as a function of  0. 

The advance of  the perihelion of a planet can be determined by noting 
that most planetary orbits are roughly circular and that a is assumed to 
depend only on r, so that a will be nearly constant along the orbit. Then 
the relation dO* =(c/a)dO can be integrated to give 0* =(c/a)O. The 
perihelion will occur at the point where 0* is greater than 2n by the amount 
6rcKM/c2r, as predicted by Einstein. At this point 

0 = (a/c)O* = [1 + (c~ - c)/c] (2x + 6rcKM/c2r) 
27c + 6~KM/c2r + 2~(~ - e)/c 

so the actual advance of the perihelion exceeds that of Einstein's theory 
by the amount 2rc(~ - c)/c. If  the ether were at rest, so that v = 0, then the 
entire Newtonian potential would arise from the variation of  ~, and it 
would follow from equation (4.1) that ~2 _ c a = -2KM/r ,  or that (~ - c)/c 

-KM/c2r.  Thus the perihelion would advance by the amount given in 
Einstein's theory plus the additional amount -2rcKM/cZr, or by the total 
amount 4rcKM/c2r, which is only two-thirds of  the value predicted by 
Einstein's theory. If  it is assumed that the advance of the perihelion arises 
entirely from relativistic effects and not from other causes such as the 
oblateness of  the sun, then the observed advance of  Mercury is much 
closer to the value obtained by Einstein, which corresponds to ~ = c, than 
to two-thirds of this amount, which is the value obtained by assuming that 
the entire Newtonian potential arises from the variation of  ~ and that 
v = 0. To this extent, the observational evidence suggests that ~ = c in the 
spherically symmetric field. 

In the case of  a light ray, the orbit is nearly a straight line. The relation 
between 0* and 0 can be found by integrating dO* along the path of the ray, 
assuming that it starts from the direction 0 = 0 * =  0 and that dO = (o@)dO*, 
so that 

0* 

0 = O* + I" (cr - c)/cdO* 
0 
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In a field in which v = 0 and the Newtonian potential arises entirely from 
variations of g, it was shown above that (g - c)/c ~ -KM/c2r. If R is the 
distance of  closest approach of  the ray to the center of symmetry, then 
r ~ R/sinO, so that (g - c)/c ~ -KMsinO/c2R, and 

0* 

0 ~ 0* - f (KMsin O/c 2 R) dO* 
o 

The integral in this relation represents only a small correction to 0", and it 
is sufficiently accurate to evaluate the integral by assuming that 0 ~ 0* in 
the integrand. With this approximation, it is found that 

0 = O* + ( K M / c  2 R) ( c o s  0* - 1) 

and this implies that 0 ~ 0* - 2KM/c2R in the direction in which the ray 
leaves the center of symmetry. According to Einstein's theory, the value 
of  0* in this direction is zc +4KM/c2R, so that 0 is approximately 
zc + 4KM/c2R-  2KM/cZR, and the assumption that v = 0 and that the 
Newtonian potential arises entirely from the variation of e decreases the 
deflection to one-half of  the value predicted by Einstein's theory. Although 
this deflection is difficult to measure with precision, the results of observa- 
tion tend to be closer to Einstein's prediction than to one-half of this value, 
and this again suggests that it is more accurate to assume that c~ = c than 
that v = 0 and that the entire Newtonian potential arises from the variation 
of~.  

The discussion above suggests that g = c in the spherically symmetric 
field about a single mass, and this naturally raises the question of  whether 

has the constant value c in all fields, which would then provide the 
additional relation needed to augment the field equations of the previous 
section. Unfortunately, however, if ~ is always equal to c, the theory 
outlined above does not  lead to gravitational radiation and thus does not 
agree with the recent observations which suggest that such radiation exists. 
As a result, it appears that the desired additional relation cannot be deter- 
mined from the presently known facts concerning gravity. However, the 
very dose  analogy that has been shown previously to exist between the 
weak-field approximation of gravity and the classical electromagnetic field 
offers a suggestion which may throw some light on this situation. In a static 
or nearly static gravitational field, the analog of the electrostatic field is the 
three-dimensional gradient of g4J2 (Kirkwood, 1972). Since the flat-space 
value of  g44 is - c  2, it follows that the gravitational analog of the electrostatic 
potential is -(g44 + c2)/2, Noting that ~2 = -g44 + gz4gz4, where gi4g~4 is 
quadratic in the field quantities and hence is negligible in the weak-field 
approximation, the gravitational analog of the electrostatic potential is 
seen to be (~2 _ c2)/2,  and the condition that g = c is the analog of the 
condition that the electrostatic potential vanishes. It is commonly assumed 
that electrostatic fields are not of great importance in outer space, and this 
might suggest by analogy that g = c in a11nearly static gravitational fields of  
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astronomical dimensions. However, it is certain that not all electrostatic 
fields vanish, and the gravitational analog of electromagnetism would 
therefore suggest that ~ cannot be equal to e in every conceivable gravi- 
tational field. This agrees with the conclusion that c~ = e in the solar field 
and still does not necessarily conflict with the existence of gravitational 
radiation. However, reasoning about gravity through its analogy to 
electromagnetism is a very speculative procedure at present, and this 
suggestion must await confirmation either from additional observational 
evidence or from the unification of gravity with the rest of physics. 

5. The Observer's Coordinates 

Because the geometry is Euclidean in the three-dimensional space 
determined by a given value of the invariant time function t, it has been 
possible to simplify the formal description of gravity by choosing the 
time-like coordinate x4 to equal t and the three spatial coordinates x~ to 
be Cartesian. Choosing the time-like coordinate to equal t is also very 
natural from a philosophical point of view, because the theory is then 
determined locally and does not refer directly to the motion of any remote 
system such as the fixed stars. However, the formal and philosophical 
simplicity of the coordinates x~ does not necessarily imply that they are the 
ones that will be measured directly by physical rods and by physical clocks 
which are synchronized by light rays or other physical means, and it 
cannot be concluded that the coordinates x, are those of one observer of 
the special theory. Since most observations concerning gravity are made on 
an astronomical scale, where it is not possible to construct a physical 
coordinate lattice, this fact is not usually important in gravitational theory. 
Moreover, in most laboratory experiments, the laboratory itself is small 
enough so that coordinates can be defined in which the gravitational field 
within the laboratory is very nearly uniform. When this is the case, it is only 
necessary to choose the coordinates so that they reduce the metric tensor to 
its flat-space value at one point, and they will then represent the observer's 
coordinates of the special theory throughout the laboratory. However, 
there are some circumstances which involve phenomena other than gravity 
in regions whose dimensions are comparable to those of the gravitational 
field, and in these circumstances it is not immediately apparent how the 
observer's coordinates of the special theory are related to the coordinates 
x, used above. 

Consider, for example, the usual analysis of the magnetic field of the 
earth, which is assumed to obey Maxwell's equations in non-rotating 
coordinates that are fixed relative to the center of the earth. These co- 
ordinates are taken to be those of one Lorentz frame of the special theory, 
and the metric coefficients are assumed to have the fiat-space values given 
by equations (1.19). If gravitational phenomena are involved in the cal- 
culations, gravity is taken into account by simply superimposing Newtonian 
theory on the fiat four-space of the special theory. Although this procedure 
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is sufficiently accurate to describe the observed facts, it is theoretically 
inconsistent with a metric-space description of gravity, in which there are 
no coordinates that reduce the metric to its flat-space value everywhere. 
Thus, the above procedure can be justified theoretically only if observer's 
coordinates can be defined in which the metric tensor is at least very nearly 
equal to its flat-space value everywhere. If  such coordinates can be found, 
they can be used without affecting the predictions of the gravitational 
theory, because these are independent of the coordinatization. However, 
in such coordinates the electromagnetic field equations will take essentially 
their flat-space form, which is the form that is assumed to describe the 
earth's magnetic field. 

It is clear that if the Cartesian coordinates x~ of the gravitational theory 
are assumed to be fixed relative to the center of the earth and non-rotating 
relative to the stars, they will be very much like the spatial coordinates that 
are usually used to describe the magnetic field of the earth. In particular, 
the three-dimensional metric will be 3i~, and in most physically important 
fields the velocity of light ~ will be very nearly equal to c, so the four- 
dimensional metric tensor will differ from the flat-space metric only in that 
the ether velocity does not vanish. This suggests that if a new time variable 
can be introduced in such a way that the new ether velocity field is very 
small, then the three spatial coordinates x~ and the new time variable will 
come very close to reducing the metric tensor to its flat-space value, and 
hence these new coordinates can reasonably be interpreted to be the 
observer's coordinates of the special theory. If  the observer's coordinates 
are denoted by 2~, this implies that 2~ = x~, and that 24 should be defined 
to minimize the ether velocity field. 

It has been shown previously that the introduction of a new time variable 
2,  defines a new ether velocity such that points fixed in this new ether will 
move with velocity W ~ relative to the ether of  the original coordinates, 
where W i is given by equation (1.18) with x,' replaced by 24. Since x,  = t 
and the spatial coordinates are Cartesian, the quantities h ~J of  equation 
(1.18) equal 6~j and ( = ~, so that equation (1.18) becomes 

W i ct 2 ~2, 
de 2Jdx, Ox, (5.1) 

If)7, is to be defined so that a point fixed in the ether of the coordinates 2~ 
is very nearly at rest in the coordinates x~, then W z must be very nearly 
equal to - v  f, where v f is the ether velocity in the coordinates x~. Since all 
known fields are nearly Newtonian, equation (1.5) and equations (3.5) show 
that v*=-g~,~Ofl/Ox~, and equation (5.1) plus the condition that 
W ~ ~ - v  f implies that 

(5.2) 
de x4/dx4 0xl OX i 

This equation can be satisfied exactly only if-c~2/(de&/dx4) is a function 
of 24 alone, but it can be satisfied approximately if it is assumed that ~ ~, c 
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and that ~4 is not greatly different from x4, so that de~4/dx4 ~ 1, in which 
case equation (5.2) becomes approximately 

~x( c ~ ~ z , - / ~ )  = 0 

This is satisfied if c254 - fl is a function of x4 only, and this function will 
be assumed to be c2x4, as this makes ~4 very nearly equal to x4. Then the 
observer's coordinates ~, of one Lorentz frame of the special theory will 
be given by 

~ = x ,  + # / e  2 (5.3) 
In the nonrelativistic limit as c ~ 0% it is seen that ~, -+ x,. 

Admittedly, the argument leading to equations (5.3) is based entirely 
on physical intuition arising from the interpretation of gravity as an ether 
flow, but it is confirmed by one additional fact which suggests that it is at 
least a reasonable working hypothesis for future investigations. This is the 
fact demonstrated previously (Kirkwood, 1970) that if x4 = t and x~ are 
Cartesian coordinates, then the observer's coordinates ~, defined by 
equations (5.3) (denoted previously by X,) have the property that the 
observer's coordinates in two different Lorentz frames are related to each 
other by the usual Lorentz transformation of the special theory. In this 
respect, the coordinates ~, are exactly like the usual coordinates of the 
special theory, and this provides additional motivation for the assumption 
that the natural coordinates x, of gravitational theory are related to the 
observer's coordinates ~ of the special theory by equations (5.3). This 
conclusion is very important to any attempt to unify physics, because 
gravity is most naturally described in the coordinates x, while all of the 
rest of physics is described in the observer's coordinates ~, of the special 
theory, and gravity can be compared accurately with the rest of physics 
only if the relation between x~ and ~, is known. 

6. Conclusions 

I t  has been shown that any metric four-space can be interpreted as an 
ether-flow in a Riemannian three-space when a time-like coordinate has 
been introduced. This interpretation makes it possible to visualize the four- 
space in a classical framework of three dimensions and time, and the 
physical intuition developed in everyday life can be applied directly to 
gravitational phenomena. 

In particular, one conclusion that is suggested by this interpretation of 
gravity is that the laws of physics should depend only upon motion relative 
to the ether or on the relative motion of nearby points that are fixed in the 
ether. This restriction is a philosophical improvement over classical physics 
and over the classical ether theories, because physics is then described 
without direct reference to any remote system such as the fixed stars. 
Analytically, this restriction will be satisfied if the laws of physics can be 
written as tensor relations which involve the gravitational field only through 
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the metric tensor, the curvature tensor and its covariant derivatives, and 
the covariant derivatives of the time variable. A previous investigation of 
the meaning of Lorentz invariance in the presence of a gravitational field 
has suggested the existence of an invariant time-like function t similar to 
the classical Newtonian time variable, and physical laws that are deter- 
mined locally with respect to this time variable will also be Lorentz invariant. 
Therefore, it has been assumed that physics can be described by tensor 
relations which involve gravity only through the metric tensor, the curvature 
tensor and its covariant derivatives, and the covariant derivatives of the 
invariant time function t. This description of gravity is less restrictive than 
Einstein's because it includes the possibility that the invariant time function 
t may appear in physical laws. 

The interpretation of gravity as an ether flow suggests an approach to the 
formulation of gravitational field equations which is very different from the 
one usually adopted in a metric-space description of gravity. Where one 
usually asks 'What is the intrinsic geometry of four-space?', the ether 
interpretation of gravity leads to the questions 'What is the intrinsic 
geometry of three-space?', 'What determines the ether velocity field?', 
and 'What is the velocity of light relative to the ether ?'. Formally, these three 
questions are completely equivalent to the original one, but considering 
them separately nonetheless suggests ideas that are not usually considered 
in metric-space theories. 

For example, considering the first question, it is readily apparent that 
three-space is very nearly Euclidean, and there is no observational evidence 
which indicates that it is not exactly Euclidean, so that the theory can be 
considerably simplified by considering only fields in which a Euclidean 
three-space exists. In such fields, the Lorentz invariant extension of New- 
tonian theory that has been given previously leads to a set of field equations 
involving the ether velocity and the velocity of light relative to the ether. 
These equations can be written in the form of equations (3.8) or equations 
(3.10), and they give an answer to the second question raised above. The 
third question above concerns the value of the function c~, which can be 
determined only from the observed relativistic corrections to Newtonian 
theory. The corrections that have been verified in the Schwarzschild field 
suggest that ~ has the constant value c in this field, but if ~ is always equal 
to c the theory does not lead to gravitational radiation. The analogy between 
gravity and electromagnetism suggests that ~ does not always equal c 
but is approximately equal to c in large, nearly static fields, and this sugges- 
tion agrees well with the observational evidence. As a result, it is not 
unreasonable to assume that the velocity of light relative to the ether may 
have the constant value c in many physically important gravitational fields. 

The magnitude of the ether velocity field is strongly dependent upon the 
choice of the time-like coordinate and can be made very small by a proper 
choice of  the time variable. As a result, it is possible to introduce a new 
system of coordinates which are quite similar to the observer's coordinates 
in one Lorentz frame of the special theory, where the ether velocity vanishes 
identically. These are the coordinates 2~ given by equations (5.3). They 
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have been defined so that they nearly reduce the metric tensor to the flat- 
space metric of  the special theory, and it is then found that the coordinates 
~ in two different Lorentz frames are related to each other exactly by the 
usual Lorentz transformation of the special theory. This definition of  the 
observer's coordinates is of importance in any attempt to unify physics, 
because all of  physics, except gravity, is usually described in the coordinates 
of the special theory and cannot be directly compared with gravity until 
these coordinates have been defined in the gravitational field, Thus the 
emphasis put on the ether velocity field by interpreting gravity as an ether 
flow leads to an approach to the unification of physics which has not 
appeared previously in curved-space interpretations of gravity. 

The interpretation of gravity given here leads to a space-time framework 
that is essentially the one of classical physics. In particular, there is an 
invariant time-like function t similar to Newton's universal time, and the 
three-space defined by one value of  t is Euclidean. There is also an ether, 
as was often assumed in classical physics, but the ether differs from those 
of  the classical theories in that its effect is more readily apparent in gravita- 
tion than in electromagnetism and its motion is determined by laws very 
different from those of classical hydrodynamics or elasticity, which were 
usually assumed to describe the ether in the classical theories. The resulting 
ether theory leads to Newtonian theory in the nonrelativistic limit and also 
leads exactly to the Schwarzschild field. As a result, when it is assumed 
that the equations of  motion of particles and light rays are geodesics, the 
theory leads to all of the corrections to Newtonian theory which have been 
verified in the Schwarzschild field. It appears that the only observational 
evidence that is not described correctly is the existence of  gravitational 
radiation, and it is not difficult to modify the theory so that it also predicts 
radiation. However, so little is known about the properties of gravitational 
radiation that the modification is not determined uniquely, and it is not 
discussed here. 

Although the ether flow is formally equivalent to a curved metric four- 
space, the interpretation of  the formalism is quite different from the one 
usually adopted in metric-space theories. This difference of interpretation 
can have a strong influence on the direction of  future research, and could 
spell the difference between success and failure in a future physical theory. 
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